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A B S T R A C T   

People in educational settings are expected to effectively use increasingly complex technology. 
One of the most important factors in technology use is computer self-efficacy (CSE). Although 
frequently assessed, available measures of CSE have various issues. Additionally, there is no 
current measure that delineates CSE at different skill levels and specifically targets usage in 
applied fields. Consequently, this set of seven studies describes the development and psycho
metric properties of two CSE scales that address these issues: the 18-item Brief Inventory of 
Technology Self-Efficacy (BITS) and the six-item Brief Inventory of Technology Self-Efficacy – 
Short Form (BITS-SF). The first study encompassed conceptualization and item development. The 
second and third studies explored and confirmed the three-factor structure of the BITS (Novice, 
Advanced, and Expert) in samples of Mechanical Turk workers and college students, respectively. 
The fourth study examined the multigroup invariance of this factor structure across men and 
women. The fifth study showed evidence for the temporal stability of the BITS. The sixth study 
assessed for validity evidence for both scales. Finally, the seventh study used latent class analysis 
to determine the underlying classes of the BITS-SF. The uses of the BITS and BITS-SF are dis
cussed. Both measures are available at www.bitssurvey.com.   

1. Introduction 

Computer-based technology is ubiquitous in, and integral to, today’s societies. Consequently, the ability to use technology is 
essential in many settings, including education. For example, effective computer use positively impacts productivity, competency, and 
successful endeavors (Torkzadeh & Lee, 2003) while improving peoples’ ability to engage in home-based work (Piszczek, 2017). As 
summarized by Peng (2017), “information technology has become one of the largest capital assets for many organizations. However, 
…employees must possess the necessary computer skills to make efficient use of the computers” (p. 31). Consequently, understanding 
factors that contribute to individuals’ effective technology use has been a continuing topic of interest across disciplines (e.g., Compeau 
& Higgins, 1995b; Evwiekpaefe et al., 2018). 

Of the many factors that influence technology use, one that has received much attention is computer self-efficacy (CSE). Bandura 
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(1986) defined self-efficacy as confidence in one’s ability to successfully engage in activities to produce desired outcomes. Since 
self-efficacy appraisals change based on the activity (e.g., a person may have high self-efficacy for working on a team but low 
self-efficacy for leading it), it is necessary to delineate self-efficacy into specific areas (Bandura, 2006). One such area is CSE, or 
confidence working with computers and related technology (Compeau & Higgins, 1995b). Research has consistently shown CSE to 
relate to and/or impact various desirable outcomes, such as learning engagement and performance (e.g., Chen, 2017; Moos & Azevedo, 
2009) and actual technology use (e.g., Mcilroy et al., 2007). Consequently, CSE is currently “one of the most important constructs in 
information systems (IS) research” (Gupta & Bostrom, 2019, p. 71). 

CSE has a prominent role in educational settings. With the amount of computer-based technology in classrooms and the increased 
movement toward online learning (e.g., Bang & Luft, 2013; Seaman et al., 2018), both instructors and students at all education levels 
are expected to develop skills necessary to effectively use changing technology. CSE is a central component of educators’ use of 
technology (Kreijns et al., 2013) and predicts the degree to which they teach computer skills to students (Siddiq & Scherer, 2016). 
Likewise, students’ CSE predicts their intention to use technology while learning (Mcilroy et al., 2007). Consequently, educational 
institutions should consider CSE when making decisions regarding teacher training and classroom technology (Ferdousi, 2019; see; 
Siddiq & Scherer, 2016). Other researchers have noted a dearth of literature on the role of CSE in specific educational contexts, such as 
online learning (e.g., Alqurashi, 2016). Consequently, there remains a need for up-to-date, well-developed CSE measures to assist 
researchers, educators, and administrators in understanding and effectively implementing technology into the educational process. 

Given the importance of CSE, many measures have been developed to assess it. However, they are of limited utility today due to 
outdated items, criterion contamination, and/or issues with their development (Howard, 2014; Marakas et al., 2007). Although many 
authors remove outdated items from available CSE measures prior to using them, these authors usually neither add new items nor 
revalidate the remaining items (Marakas et al., 2007), which can lead to construct underrepresentation. Additionally, none of the 
current measures assesses a wide range of skill levels. Educational researchers have emphasized the need for CSE measures that include 
separate subscales for novice and advanced skills (see Rohatgi et al., 2016; Scherer & Siddiq, 2015). Given the expectation that 
employees and students interact with increasingly more complex technology (see Collins & Halverson, 2010; Nelson et al., 2019), it is 
likely necessary to also evaluate confidence at the expert level. There is currently only one measure that assesses CSE across novice, 
advanced, and expert skill levels (Murphy et al., 1989), and its items are outdated (Howard, 2014). Finally, CSE measures have 
typically focused on either general or very specific aspects of CSE (Gupta & Bostrom, 2019), rather than targeting confidence for 
computer skills needed in practical usage. The latter is of special interest in educational settings, given that employees and students are 
often required to have both basic and complex computer skills (see Collins & Halverson, 2010; Goode, 2010; Peng, 2017). 

Overall, the currently available measures of CSE have various limitations, both in general and specific to educational settings. 
Consequently, the current studies sought to develop two up-to-date CSE scales—one full-length measure and one screening measur
e—suitable for use with individuals at novice, advanced, and expert levels and focused on confidence for practical computer skills. 

1.1. Measuring computer self-efficacy 

Many CSE measures have been developed over the last 35 years (e.g., Cassidy & Eachus, 2002; Christoph et al., 1998; Compeau & 
Higgins, 1995b; Conrad & Munro, 2008; Gist et al., 1989; Henry & Stone, 1997; Howard, 2014; Laver et al., 2012; Marakas et al., 2007; 
Murphy et al., 1989; Tsai et al., 2019). As reviews of these measures exist (e.g., Gupta & Bostrom, 2019), we will not repeat their 
details. Instead, we focus on three prototypical measures that have been well received: the Computer Self-Efficacy Scale by Murphy 
et al. (1989), the untitled measure by Compeau & Higgins, 1995b, and the Computer User Self-Efficacy Scale by Cassidy and Eachus 
(2002). These are arguably the most popular CSE measures (see Howard, 2014; Marakas et al., 2007), and each serves as an example of 
one or more issues related to the use of existing CSE scales: outdated items, criterion contamination, problematic construct oper
ationalization, and task specificity. 

1.1.1. Murphy et al.’s (1989) Computer Self-Efficacy Scale 
The Computer Self-Efficacy Scale (Murphy et al., 1989) was one of the first CSE measures. The authors created 32 items reflecting 

specific actions concerning computer use. Exploratory factor analysis in a sample of students in computer courses yielded three factors: 
Beginning (16 items; e.g., “Adding and deleting information from a data file”), Advanced (13 items; e.g., “Using the computer to 
organize information”), and Mainframe (3 items; e.g., “Logging onto a mainframe computer,” p. 896). 

The Computer Self-Efficacy Scale (Murphy et al., 1989) is considered a strong operationalization of the CSE construct (Marakas 
et al., 2007). It is also one of the only CSE measures that has novice and advanced skills loading onto separate factors. However, its 
items are outdated (Howard, 2014). For instance, the Mainframe subscale is no longer relevant (Rainer et al., 2003), and many items 
on the Advanced subscale are now considered novice (Marakas et al., 2007). Outdated items are found in many CSE measures (e.g., 
Cassidy & Eachus, 2002; Christoph et al., 1998; Conrad & Munro, 2008; Gist et al., 1989), underscoring the need for updated scales 
(Marakas et al., 2007). 

1.1.2. Compeau & Higgins (1995b) Computer self-efficacy measure 
Compeau & Higgins (1995b) developed their measure of CSE based on Bandura’s (1986) assertion that self-efficacy scales should be 

generalizable. Consequently, Compeau and Higgins developed ten items that assessed confidence in one’s ability to use unfamiliar 
software packages under different conditions (e.g., “If someone else had helped me get started,” p. 211). Partial Least Squares models 
using business employees indicated a unidimensional solution that positively predicted performance, computer outcome expectations, 
and computer usage. 
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Compeau & Higgins (1995b) measure is the most used CSE scale (Marakas et al., 2007). It benefits from strong conceptualization 
and focus on a task (learning how to use software) that generalizes across environments. However, the authors themselves suggest that 
responses can be affected by individuals’ learning self-efficacy and ability to imagine themselves in hypothetical scenarios (Compeau & 
Higgins, 1995b), which indicates criterion contamination. Additionally, specific items may be impacted by extraneous variables 
(Howard, 2014), such as social anxiety for those involving other people. Criterion contamination also exists in other CSE measures (e. 
g., Cassidy & Eachus, 2002; Conrad & Munro, 2008; Gist et al., 1989; Henry & Stone, 1997), emphasizing the need for scales that are 
clearly differentiated from related constructs. Finally, Compeau and Higgins’ measure is specific to software use. 

1.1.3. Cassidy and Eachus’ (2002) Computer User Self-Efficacy Scale 
Cassidy and Eachus (2002) developed the Computer User Self-Efficacy Scale. They considered the task-specific nature of items used 

in previous scales to be concerning and sought to create a more general measure. Consequently, they developed 30 items representing 
feelings individuals have about computers (e.g., “Using computers is something I rarely enjoy,” p. 151). Analyses using college students 
indicated a unidimensional structure, and the measure correlated strongly and positively with computer experience. 

Although the Computer User Self-Efficacy Scale was designed to account for issues in previous measures (Cassidy & Eachus, 2002), 
there are concerns with its construct operationalization. It is unclear to what degree this scale assesses self-efficacy, as the instructions 
ask respondents to rate their feelings about computers, rather than their confidence using them. At the least, many items suffer from 
criterion contamination (Howard, 2014). Such issues are seen in other measures such that items or full measures may not assess CSE (e. 
g., Christoph et al., 1998; Conrad & Munro, 2008; Henry & Stone, 1997; Howard, 2014). Additionally, Cassidy and Eachus’ (2002) 
assertion that CSE should be assessed generally has been critiqued by other researchers (Marakas et al., 2007). 

There is a continuing debate about the necessary degree of task specificity in CSE measures. For instance, unlike Cassidy and Eachus 
(2002), Marakas et al. (2007) emphasized the need for CSE measures to focus on task-specific activities (e.g., using spreadsheets). In 
practice, researchers developing CSE measures utilize different approaches depending on the measurement goal. For example, Howard 
(2014) developed a non-specific 12-item CSE scale modeled after general self-efficacy measures. Conversely, Tsai et al. (2019) 
developed their 16-item measure to specifically assess confidence in computer programming. Both approaches have been generally 
well received. Therefore, we conclude that the necessary degree of task specificity depends on how authors envision their measure will 
be used, underscoring the need for strong construct conceptualization. 

1.2. The current studies 

The available CSE measures represent a range of strengths and limitations. Some measurement aspects, such as outdated items, 
demonstrate the need for scales that account for current technology. Others, including criterion contamination and problematic 
construct operationalization, underscore the importance of item development grounded in expert knowledge. Finally, the task spec
ificity debate emphasizes the need for measures that reflect an understanding of their target usage scenarios. 

We sought to develop updated CSE measures with strong construct operationalization. Following the example of Murphy et al. 
(1989), we were interested in delineating novice, advanced, and expert confidence levels. Relatedly, we chose our scales’ task 
specificity to reflect the needs of users in applied fields such that they cover a range of common practical computer skills. Conse
quently, we developed two scales to address these goals: one full-length measure—the Brief Inventory of Technology Self-Efficacy 
(BITS)—and one shorter screening measure—the Brief Inventory of Technology Self-Efficacy – Short Form (BITS-SF). 

We conducted seven studies with the purpose of developing two CSE measures and assessing their psychometric properties (i.e., 
factor structure, temporal stability, and aspects of validity) for use in educational and other applied settings. These studies used 
samples from three populations and utilized best practices for developing both self-efficacy measures generally (Bandura, 2006) and 
CSE measures specifically (see Marakas et al., 2007). The first study describes our item development process. This study consisted of 
four steps: construct conceptualization (specifying the underlying construct), initial item development (creating an initial item pool), 
item reduction (reducing the item pool), and item refinement (developing a final list of items). 

The second through fifth studies primarily focused on the BITS. The second study assessed if the BITS items resulted in a viable 
factor structure using exploratory factor analysis (EFA); we also developed the BITS-SF based on the final set of items determined 
through the EFA. The third study examined if the factor structure of the BITS from the second study could be confirmed in a different 
sample using confirmatory factor analysis (CFA). The fourth study assessed for multigroup invariance of the factor structure across men 
and women, again using CFA. Finally, the fifth study examined if the BITS subscales showed evidence of temporal stability through 
test-retest reliability analyses. 

The sixth study investigated both the BITS and BITS-SF scores to determine if they showed evidence of convergent, discriminant, 
and concurrent validity. Finally, the seventh study used latent class analysis to determine if there were underlying groups delineated by 
the BITS-SF that corresponded to the factor structure of the BITS. 

2. Study 1: item development 

Item development consisted of four steps designed to maximize content validity: construct conceptualization, initial item devel
opment, item reduction, and item refinement. This and all subsequent studies were approved by the Institutional Review Board at the 
first and/or second author’s institution. 
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2.1. Step 1: construct conceptualization 

Strong construct conceptualization is a critical component of scale development (see MacKenzie et al., 2011). Our construct 
conceptualization of the BITS and BITS-SF was based on a review of the CSE literature, described above. As a result, we sought to 
develop two scales. The first was meant to be a short measure (< 30 items) focusing on an individual’s confidence in their ability to 
perform computer-related actions. We were interested in actions at three levels corresponding to those developed by Murphy et al. 
(1989): novice, advanced, and expert. Theoretically, we based these categories on three aspects of the five-stage model of adult skill 
acquisition (Dreyfus, 2004). This model focuses on skill development guided by an instructor and occurring on a continuum from less 
to more advanced. A learner moves along the continuum by becoming familiar with the skill and gaining experience, first through 
generally understanding the skill and rules associated with it and later by enacting the skill intuitively in different situations (Dreyfus, 
2004; Dreyfus & Dreyfus, 1980). The five stages are novice (focusing on basic features and non-contextual rules), advanced beginner 
(recognizing contextual aspects), competence (discriminating among, and reacting to, relevant contextual aspects), proficiency 
(moving beyond rules to apply different strategies), and expert (working instinctively and outside of rules; Dreyfus, 2004). This model 
has been used in various educational contexts (e.g., Lyon, 2015; Ogbuanya & Chukwuedo, 2017). 

We were primarily interested in elucidating the first (novice), third (competence), and fifth (expert) stages (Dreyfus, 2004), 
although we used Murphy et al.’s (1989) terms of novice, advanced, and expert to maintain consistency with this scale. We defined 
“novice” actions as skills required for daily modern computer use that are less contextually situated, such as going to Internet websites. 
“Advanced” actions would consist of skills that necessitate some understanding of context and appropriate use but not specialized 
knowledge, such as using functions in spreadsheets. Finally, “expert” actions would include skills that require a substantial amount of 
practice or training, such as programming software applications. Our focus was on demarcating items that would fall into each level, 
with more advanced users also being confident in their ability to enact the lower-level skills. We expected each level to consist of items 
reflecting different subcategories of computer tasks, such as interacting with hardware and the Internet. We wanted these sub
categories to be equally represented across the three levels. For instance, if “hardware” were a subcategory, we would include one item 
representing hardware in each skill level (novice, advanced, and expert). It should be noted that the actual perceived difficulty of each 
skill is relative to an individual’s prior knowledge, and even novice-level skills vary in complexity. For example, going to Internet 
websites can include using Boolean logic, which we would not consider a novice skill. As a result, we paid close attention to item 
wording to ensure proper understanding. 

We planned the second scale, the BITS-SF, to be a condensed version of the BITS (< 10 items) that could be used for swift 
assessment. We intended for it to be developed based on the final BITS and consist of items at all three skill levels. A total score would 
be calculated to provide one number reflecting a person’s confidence. 

During item construction, we relied on Bandura’s (2006) recommendations for developing self-efficacy scales. Our scales’ focus on 
perceived competence to engage in diverse computer tasks is consistent with Bandura’s (1986) dimension of generality. We also 
followed Bandura’s (1986) recommendation to assess magnitude (the difficulty level an individual is confident in attaining) and 
strength (the level of confidence one has in attaining this level), with each measure emphasizing one of these aspects. We selected a 
Likert scale response format for the BITS, which assesses strength and has been shown to be appropriate for self-efficacy measures (e.g., 
Maurer & Andrews, 2000). Since the BITS-SF was meant to be a screening tool, we focused solely on magnitude; consequently, the 
BITS-SF items have dichotomous response options (Yes and No; see Bandura, 1986). Finally, consistent with both Bandura’s (1999) 
four sources of self-efficacy (mastery experiences, vicarious experiences, persuasion, and emotional states) and Dreyfus’ (2004) 
five-stage model of skill acquisition, we developed items for which responses would most likely stem from mastery experiences, which 
is the most effective self-efficacy source (Bandura, 1999). 

2.2. Step 2: initial item development 

Two important aspects of item development include covering all aspects of the general domain (i.e., computer skills) and within 
each domain content area (i.e., novice, advanced, expert; MacKenzie et al., 2011). To this end, we based our item development on a 
survey of computer enthusiasts gathered via a news item posted on Tom’s Hardware, a popular website for computer professionals. 
Interested participants followed a secure SurveyMonkey link leading to three open-ended questions regarding what computer users 
would feel confident doing at novice, advanced, and expert skill levels, as well as questions about their own computer use. Participants 
did not receive compensation. 

Two hundred seventy-five participants completed the questionnaire over a two-week period. They primarily identified as expert 
computer users (n = 176, 64.0%), and the vast majority had helped someone else with their computer during the past month (n = 262, 
95.3%). 

Participants provided hundreds of useable responses to the questions about novice (588), advanced (704), and expert (582) CSE. 
The first author (who is an expert computer user) sorted the responses into computer skill subcategories, such as those related to 
hardware and file management. The first author then developed items for all non-identical actions in each subcategory, which resulted 
in 594 initial items. 

2.3. Step 3: item reduction 

We administered the 594 items to 86 college students at a large Midwestern university. We selected college students due to their 
likelihood of representing individuals primarily in the advanced skill level, but with substantial numbers in both the novice and expert 
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ranges. Traditional college students have been exposed to modern technology throughout most of their lives (Rashid & Asghar, 2016); 
however, they often do not have the specialized training expected from experts. We based our initial item reduction on four criteria: 
how items related to each other using principal component analysis (PCA), the average response to each item, the congruence of items 
with expert categories, and how representative items were of the skill subcategories (e.g., hardware). These criteria were considered 
concurrently, and no items were dropped solely based on component loadings. Through our item reduction process, we trimmed the 
594 initial items to 53 across nine skill subcategories. The details of this process are in Appendix S1 of the online supplement. 

2.4. Step 4: item refinement 

Following the initial item reduction, we sought to refine items and potentially reduce or combine the subcategories. We examined 
the 53 items in a series of samples gathered from Mechanical Turk (MTurk), an online marketplace run by Amazon where people 
(workers) complete online tasks for monetary compensation (Iperiotis, 2010). We selected MTurk samples since they represent a 
different population than the college student sample used for the initial item reduction; they also likely have more advanced and expert 
skill levels due to seeking out Internet work. We restricted participation to those who identified as novice or novice-to-advanced 
computer users, who we believed would represent our conceptualization of the advanced skill level. 

To arrive at the final set of items, we gathered five MTurk samples ranging in size from 82 to 142. The first sample received the full 
53 items, and the resulting data were subjected to the same four criteria as the initial 594 items (except that we used EFA instead of 
PCA). This led to dropping some items and slightly rewriting others; the revised items were then given to a second sample. This process 
continued until we reached 21 items in seven subcategories (file management, hardware, Internet, networking, operating system, 
software, and troubleshooting), with one item each per skill level (novice, advanced, and expert). The file management items were 
subject to the most rewrites; we anticipated potentially removing them at a later stage. A detailed description of this process is in 
Appendix S2 of the online supplement. 

3. Study 2: BITS EFA and BITS-SF development 

We examined the 21 items using EFA on data collected from a new sample of MTurk workers. We again restricted participation to 
those who were self-identified novice or novice-to-advanced computer users. 

3.1. Method 

3.1.1. Participants 
Participants were 355 U.S. MTurk workers who provided useable data. Most identified as women (n = 224, 63.5%), followed by 

men (n = 128, 36.1%) and other (n = 1, 0.3%). Approximately two-thirds reported being in middle adulthood (30–60 years old, n =

Table 1 
Item loadings and descriptive information for the BITS exploratory factor analysis (EFA; study 2) and confirmatory factor analysis (CFA; study 3).  

Item F1: Expert EFA/ 
CFA 

F2: Advanced EFA/ 
CFA 

F3: Novice EFA/ 
CFA 

M (SD) 
EFA 

Range EFA M (SD) 
CFA 

Range CFA 

Expert: Software .87/.83 -.12 -.02 1.73 (1.33) 1.00–6.00 2.00 (1.32) 1.00–6.00 
Expert: Networking .84/.82 -.03 .02 1.77 (1.31) 1.00–6.00 1.92 (1.32) 1.00–6.00 
Expert: Operating System .80/.79 .01 .04 2.02 (1.36) 1.00–6.00 1.90 (1.33) 1.00–6.00 
Expert: Troubleshooting .76/.87 .06 -.04 2.10 (1.35) 1.00–6.00 2.21 (1.47) 1.00–6.00 
Expert: Hardware .75/.77 -.05 .04 1.87 (1.34) 1.00–6.00 2.03 (1.52) 1.00–6.00 
Expert: Internet .65/.55 .13 -.01 1.97 (1.34) 1.00–6.00 2.52 (1.51) 1.00–6.00 
Advanced: Networking -.15 .83/.72 .01 3.84 (1.68) 1.00–6.00 3.20 (1.78) 1.00–6.00 
Advanced: Operating 

System 
-.04 .65/.77 .10 4.47 (1.49) 1.00–6.00 3.17 (1.88) 1.00–6.00 

Advanced: Hardware .08 .63/.79 -.01 3.54 (1.73) 1.00–6.00 4.06 (1.74) 1.00–6.00 
Advanced: Troubleshooting .16 .60/.80 .03 3.36 (1.38) 1.00–6.00 3.54 (1.71) 1.00–6.00 
Advanced: Software .29 .50/.75 -.05 3.11 (1.55) 1.00–6.00 4.05 (1.72) 1.00–6.00 
Advanced: Internet .24 .42/.57 .05 3.32 (1.74) 1.00–6.00 3.80 (1.73) 1.00–6.00 
Novice: Software -.05 -.10 .80/.88 5.84 (0.52) 3.00–6.00 5.83 (0.61) 1.00–6.00 
Novice: Hardware .09 .08 .70/.83 5.75 (0.68) 1.00–6.00 5.86 (0.58) 2.00–6.00 
Novice: Troubleshooting -.03 .05 .67/.73 5.81 (0.59) 2.00–6.00 5.88 (0.43) 4.00–6.00 
Novice: Internet -.03 -.15 .64/.84 5.87 (0.53) 1.00–6.00 5.82 (0.59) 2.00–6.00 
Novice: Networking .06 .18 .43/.83 5.69 (0.77) 1.00–6.00 5.80 (0.69) 1.00–6.00 
Novice: Operating System .00 .17 .40/.68 5.69 (0.92) 1.00–6.00 5.82 (0.71) 1.00–6.00  

Factor Intercorrelations 
F1 .90/.90   1.91 (1.10) 1.00–6.00 2.10 (1.15) 1.00–6.00 
F2 .61/.69 .83/.87  3.61 (1.18) 1.00–6.00 3.64 (1.37) 1.00–6.00 
F3 -.30/-.21 .19/.08 .74/.86 5.77 (0.45) 3.50–6.00 5.83 (0.49) 2.40–6.00 

Note. Subscale scores were calculated by taking the mean of the relevant items. Factor loadings without a “/” are from the EFA only, as CFAs do not 
provide this information. Internal consistency estimates for the factors are listed on the diagonals of the factor intercorrelations. 
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233, 65.6%), followed by young adulthood (18–29 years old, n = 82, 23.1%) and older adulthood (over 60 years old, n = 40, 11.3%). 

3.1.2. Measures 
The measures consisted of demographic questions and the 21 items developed in Study 1. The 21 items were given in a pre

determined order. We began with one in the advanced category to avoid anchoring (Marakas et al., 2007) and otherwise presented the 
items in random order; this order was then used in all subsequent studies and the final BITS. 

3.1.3. Procedure 
Interested participants were sent to a secure Qualtrics link consisting of an introduction statement, the BITS, and the demographic 

questions. Upon completion, they received $0.50. 

3.2. Results and discussion 

We conducted an EFA on the 21 items using principal axis factoring and an oblique rotation (Oblimin; Worthington & Whittaker, 
2006). Factor loadings of ≥ 0.32 (Tabachnick & Fidell, 2007) were significant. We considered items loading at ≥ 0.32 on two or more 
factors, and/or loading on a second factor at a difference of ≤ 0.15, to be cross-loading (Costello & Osborne, 2005; Worthington & 
Whittaker, 2006). 

The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.93, and Bartlett’s test was significant (χ2
(210) = 3335.30, p < .001). 

The EFA resulted in three extracted factors: Novice, Advanced, and Expert. All had eigenvalues > 1.00, which together accounted for 
49.58% of the overall variance. All items loaded at ≥ 0.32 on their expected factor, except the novice file management item, which 
loaded at 0.54 on the Advanced factor. Additionally, the advanced file management item cross-loaded onto the Advanced (0.48) and 
Expert (0.32) factors. As we had anticipated issues with the file management items, they were removed and the EFA rerun. 

The EFA on the 18 items resulted in the same three extracted factors; all had eigenvalues > 1.00, and they accounted for 50.07% of 
the total variance. All items loaded above 0.32 (≥ 0.40) on only the expected factor. Each factor consisted of six items, one each for the 
subcategories of hardware, Internet, networking, operating system, software, and troubleshooting. Cronbach’s alphas ranged from 
adequate to excellent, with Novice α = 0.74, Advanced α = 0.83, and Expert α = .90. Consequently, we retained all 18 items. The final 
factor loadings and descriptive statistics are shown in Table 1. 

3.3. Development of the BITS-SF 

We developed the BITS-SF from the finalized 18 items. This was meant to be a short screening tool consisting of items across skill 
levels and subcategories to which participants would respond dichotomously (Yes or No) according to their perceived ability to engage 
in the skill. To this end, we chose six items from the BITS to comprise the BITS-SF: two from each skill level and one from each 
subcategory. We selected items that had the highest factor loadings on each of the three EFA factors; when this was not possible, we 
selected the second-highest factor loading for one of the items. We began the BITS-SF with an advanced item to avoid anchoring 
(Marakas et al., 2007) and randomly ordered the other items; we used the same order in all subsequent studies and the final BITS-SF. 

4. Study 3: BITS confirmatory factor analysis (CFA) 

We next sought to confirm the factor structure of the BITS in a sample of college students. This sample was also used in subsequent 
studies to assess for validity evidence for the BITS and BITS-SF scores. 

4.1. Method 

4.1.1. Participants 
Participants were 220 college students from a large Midwestern university who provided useable data. Approximately two-thirds 

identified as women (n = 143, 66.8%), followed by men (n = 71, 33.2%). Most indicated they were European American (n = 150, 
70.1%), followed by African American (n = 35, 16.4%), Latin American (n = 10, 4.7%), Asian American or Biracial/Multiracial (n = 6, 
2.8%, each), other (n = 4, 1.9%), and Middle Eastern/North African (n = 1, 0.5%). Ages ranged from 18 to 56 (M = 20.19, SD = 4.37). 

4.1.2. Measures 
In addition to the BITS, BITS-SF, and demographics, participants completed 21 measures used in a later study to assess for validity 

evidence. Descriptions of all validity measures are in Table S1 of the online supplement. 

4.1.3. Procedure 
Participants were recruited from psychology classes through the department’s human subjects pool. They were directed to a secure 

Qualtrics link providing the informed consent, measures, and debriefing. Participants completed the demographic questions, the BITS, 
the counterbalanced validity measures, and, finally, the BITS-SF. They received course or extra credit. 
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4.2. Results and discussion 

We assessed three solutions. The first was a single-factor model in which all items loaded on one latent factor. The second was a 
three-factor uncorrelated model in which the items loaded on one of three latent factors (Novice, Advanced, or Expert); we fixed the 
latent factor covariances to zero. The third was a three-factor correlated model, which was identical to the three-factor uncorrelated 
model except that the latent factors could covary. Based on the results of the EFA, we expected the three-factor correlated model to 
provide the best fit. 

We ran all models using Mplus v. 8.0 (Muthén & Muthén, 1998 – 2017) with robust maximum likelihood estimation. We examined 
several goodness-of-fit indices: the robust χ2, the comparative fit index (CFI), the root-mean-square error of approximation (RMSEA), 
and the standardized root mean square residual (SRMR). The robust χ2 should be nonsignificant; however, this rarely occurs. The CFI 
should be ≥ 0.900, with values ≥ 0.950 indicating good fit. The RMSEA should be ≤ 0.100, with values ≤ 0.080 indicating adequate fit 
and ≤ 0.050 suggesting good fit (see Byrne, 2012, for a review). The SRMR should be ≤ 0.100 (Kline, 2016), with ≤ 0.050 suggesting 
good fit (Byrne, 2012). We compared solutions based on changes in the Akaike Information Criterion (AIC), which is appropriate for 
nested and non-nested models (Burnham & Anderson, 2002). 

The single-factor solution was a poor fit: robust χ2
(135) = 1703.29, p < .001; CFI = 0.000; RMSEA = 0.230 (90% CI = 0.220, 0.240); 

SRMR = 0.291. The three-factor uncorrelated solution was also a poor fit: robust χ2
(135) = 494.79, p < .001; CFI = 0.766; RMSEA =

0.110 (90% CI = 0.100, 0.121); SRMR = 0.207. However, the three-factor correlated solution was generally an adequate fit: robust 
χ2

(132) = 330.45, p < .001; CFI = 0.871; RMSEA = 0.083 (90% CI = 0.072, 0.094); SRMR = 0.056. 
Next, we assessed models based on the AIC. Lower AICs are preferred; if the AICs of two models differ by > 10, there is no support 

for the one with the higher AIC (Burnham & Anderson, 2002). The three-factor correlated solution had the smallest AIC (10,203.73), 
which was lower than either the single-factor (11,625.17) or three-factor uncorrelated (10,349.35) AICs. Consequently, the 
three-factor correlated solution was the best fit. Standardized parameter estimates, which were significant at p < .001, as well as 
descriptive statistics, are shown in Table 1. Cronbach’s alphas were strong for the Novice (α = 0.86), Advanced (α = 0.87), and Expert 
(α = 0.90) factors. 

As expected, results from the CFA supported the Novice, Advanced, and Expert three-factor structure in college students. This is 
consistent with our theoretical model (Dreyfus, 2004), our construct operationalization informed by computer experts, and the EFA 
results based on MTurk workers. 

5. Study 4: BITS tests of multigroup invariance 

We examined the BITS for multigroup invariance across men and women using a combined sample of MTurk workers from Study 2 
and college students from Study 3; this resulted in 201 (35.1%) men and 371 (64.9%) women. As men and women consistently ev
idence different CSE levels, which is pronounced for more advanced skills (see Hatlevik et al., 2018), we expected the two groups to 
show invariance for item-factor associations (configural) and item loadings (metric), but not necessarily item intercepts (scalar; see 
Fischer & Karl, 2019). We determined invariance by a ΔCFI < 0.010 alongside either a ΔRMSEA < 0.015 or a ΔSRMR < 0.030 (metric) 
or < 0.010 (scalar; Chen, 2007). 

The test of configural invariance showed adequate fit: robust χ2
(264) = 597.13, p < .001; CFI = 0.910; RMSEA = 0.066 (90% CI =

0.059, 0.074); SRMR = 0.068. The goodness-of-fit indices did not substantially change for the test of metric invariance: robust χ2
(279) 

= 597.68, p < .001; CFI = 0.914; RMSEA = 0.063 (90% CI = 0.056, 0.070); SRMR = 0.080. However, there were meaningful changes 
for the test of scalar invariance: robust χ2

(297) = 678.17, p < .001; CFI = 0.897; RMSEA = 0.067 (90% CI = 0.060, 0.074); SRMR =
0.095. Follow-up analyses indicated scalar invariance for all Novice and Advanced items but none of the Expert items. Additionally, 
latent mean comparisons showed the two groups did not significantly differ for the Novice subscale (0.19, p = .149) but that women 
scored lower than men on the Advanced subscale (− 0.46, p < .001). A detailed description of this study is in Appendix S3 of the online 
supplement. 

Our results suggest the item-factor associations and factor loadings are invariant across men and women; however, the item in
tercepts are only invariant for the Novice and Advanced subscales. These indicate that the BITS is a viable measure with sensitivity to 
known demographic differences. 

6. Study 5: BITS test-retest reliability 

We assessed for evidence of test-retest reliability using subsets of the MTurk workers gathered in Study 2 who completed the BITS a 
second time after either two or eight weeks; 110 and 77 participants provided useable data, respectively. Intraclass correlation co
efficients (ICCs) using two-way mixed effects and absolute consistency estimates were strong and significant at p < .001 for all three 
BITS subscales after both two and eight weeks: Novice = 0.87 and 0.80, respectively; Advanced = 0.87 and 0.92; and Expert = 0.89 and 
0.93. These results provide strong evidence for the temporal stability of the BITS for up to eight weeks. 

7. Study 6: BITS and BITS-SF convergent, discriminant, and concurrent validity 

Using the college student sample described in Study 3, and the measures described in Table S1 of the online supplement, we 
examined the BITS and BITS-SF scores for evidence of convergent, discriminant, and concurrent validity. We assessed the former two 
by correlating our scales with measures of general CSE; specific CSE (i.e., smartphone use, computer use for teaching, and college 

A. Weigold and I.K. Weigold                                                                                                                                                                                        



Computers & Education 169 (2021) 104210

8

student laptop use); computer anxiety, attitudes, and outcome expectations; and the broader constructs of general self-efficacy, locus of 
control, self-esteem, personality, and social desirability. We focused on correlation magnitude, with rs = 0.20, 0.50, and 0.80 indi
cating small, medium, and large effect sizes, respectively (Ferguson, 2009). We examined concurrent validity by comparing how the 
BITS and BITS-SF related to computer skill and college major. 

7.1. Convergent and discriminant validity 

The correlations of the BITS subscales and BITS-SF total score with the validity measures are shown in Table 2. As general CSE 
measures often assess CSE in the advanced range, we anticipated that the general CSE measures would evidence moderate positive 
correlations with the BITS Advanced subscale, small-to-moderate positive correlations with the BITS-SF, and small positive correla
tions with the Novice and Expert subscales. Additionally, we anticipated all subscales, and the BITS-SF, would have small positive 
correlations with the specific CSE measures. 

As expected, the BITS Advanced subscale had primarily moderate correlations with all CSE scales, with several being small (r range 
= 0.26 to 0.64). The BITS Novice subscale evidenced small correlations with approximately half of the CSE measures; the rest were 
negligible (r range = − 0.01 to 0.27). The BITS Expert subscale showed small correlations with all CSE measures except one, which was 

Table 2 
Correlations of the BITS subscales and BITS-SF with validity measures in study 6.  

Measure Novice Advanced Expert BITS-SF M (SD) α 

Convergent 
Murphy et al. (1989): Comp. SE 

Beginner .30** .47** .20** .40** 4.03 (0.78) .93 
Advanced .12 .62** .47** .61** 3.43 (0.88) .92 
Mainframe .16* .26** .20** .34** 3.72 (1.05) .87 

Cassidy and Eachus (2002): Comp. SE .30** .47** .21** .38** 4.32 (0.77) .94 
Compeau and Higgins (1995b): Comp. SE .13 .48** .36** .44** 6.15 (1.73) .91 
Henry and Stone (1997): Comp. SE .11 .53** .36** .41** 3.55 (0.78) .79 
Hill, Smith, & Mann, (1987): Comp. SE .33** .29** .10 .13 3.86 (0.88) .81 
Howard (2014): Comp. SE .13 .62** .46** .51** 4.48 (1.34) .95 
Marakas et al. (2007): Comp. SE 

General .27** .64** .36** .54** 6.81 (2.04) .86 
Windows .25** .62** .37** .50** 6.98 (2.23) .84 
Spreadsheet .14* .61** .40** .47** 6.15 (2.72) .95 
Word-Processing .22** .57** .32** .45** 7.01 (2.54) .90 
Internet .26** .57** .30** .51** 6.97 (2.42) .86 
Database -.01 .37** .38** .39** 4.12 (2.81) .95 

Hong, Hwang, Tai, & Chen (2014): Smartphone SE .44** .23** -.07 .21** 3.66 (0.48) .84 
Teo and Koh (2010): Teaching Comp. SE 

Basic .14* .12 -.03 .09 5.74 (1.55) .94 
Media-Related -.03 .33** .37** .38** 4.26 (1.60) .88 
Web-Based .07 .28** .21** .28** 5.00 (1.53) .77 

Young (2001): Laptop SE -.12 -.06 -.00 -.01 5.01 (2.94) .96 
Discriminant 
Lester, Yang, & James (2005): Comp. Anxiety -.31** -.25** -.05** -.19** 2.46 (0.90) .75 
Heinssen, Glass, & Knight (1987): Comp. Anxiety -.31** -.39** -.18** -.32** 2.31 (0.63) .90 
Nickell & Pinto (1986): Comp. Attitudes .28** .24** .01 .15* 3.56 (0.56) .85 
Compeau & Higgins (1995a): Outcome Expect. .04 .29** .23** .20** 3.69 (0.82) .93 
Henry and Stone (1997): Outcome Expect. 

Work-Related .18** .30** .12 .22** 3.88 (0.76) .90 
Personal .15* .23** .12 .18* 4.07 (0.82) .88 

Chen, Gully, & Eden (2001): General SE .30** .14* .07 .02 4.08 (0.55) .90 
Schwarzer & Jerusalem (1995): General SE .14* .21** .10 .04 3.14 (0.44) .87 
Levenson (1973): Locus of Control 

Internal .01 .14* .09 .01 3.63 (0.65) .53 
Powerful Others -.20** .14* .19* .16* 2.51 (1.02) .82 
Chance -.26** .03 .16* .10 2.50 (0.97) .78 

Rosenberg (1965): Self-Esteem .18** .10 .04 -.03 2.94 (0.53) .88 
IPIP (2020): Personality 

Extraversion .16* .00 -.01 -.11 3.35 (0.70) .84 
Neuroticism -.13 -.12 -.08 -.09 2.74 (0.76) .85 
Openness .20** .12 -.04 -.02 3.50 (0.63) .77 
Agreeableness .18** -.04 -.12 -.11 3.75 (0.51) .73 
Conscientiousness .22** .13 .03 .07 3.44 (0.57) .78 

Hart, Ritchie, Hepper, & Gebauer (2015): Social Desirability 
Self-Deceptive Enhancement .03 .16* .19** .11 4.07 (0.79) .62 
Impression Management .10 .10 .03 .12 4.26 (0.93) .79 

Note. IPIP = International Personality Item Pool, Comp. = computer, SE = self-efficacy, Expect. = expectations. *p ≤ .05, **p ≤ .01. Bolded items are 
those above the minimum 0.20 effect size for practical significance. 
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negligible (r range = 0.10 to 0.46). The BITS-SF evidenced small-to-moderate correlations with all CSE measures except one, which 
was negligible (r range = 0.13 to 0.61). Finally, the three BITS subscales and BITS-SF all evidenced small correlations with half of the 
specialized CSE measures; the rest were negligible (r range = − 0.00 to 0.44). 

Regarding discriminant validity, we expected the three BITS subscales and BITS-SF to evidence negligible-to-small correlations 
with the measures assessing computer aspects (anxiety, attitudes, and outcome expectations), as well as agency and wellbeing (general 
self-efficacy, locus of control, and self-esteem). We also anticipated negligible correlations with personality and social desirability. As 
expected, all subscales and the BITS-SF had negligible-to-small correlations with the computer anxiety, attitudes, and outcome 
expectation measures (r range = 0.01 to − 0.39). The BITS Advanced and Expert subscales, as well as the BITS-SF, had mostly negligible 
correlations with all measures of human agency, self-esteem, personality, and social desirability (r range = − 0.01 to 0.21). The BITS 
Novice subscale showed negligible correlations with all but five of these measures, which were small (r range = 0.01 to 0.30). 

Overall, these results indicate good evidence of convergent and discriminant validity for the BITS subscale scores and BITS-SF total 
score. The BITS Novice and Expert subscales had lower correlations with other CSE measures compared to the Advanced subscale and 
BITS-SF. Additionally, all evidenced negligible-to-small correlations with assessments of dissimilar constructs. 

7.2. Concurrent validity 

We assessed for concurrent validity evidence by examining how the three BITS subscale scores and BITS-SF total score related to 
self-identified computer skill level and college major. We used multivariate analysis of variance (MANOVA; BITS) or analysis of 
variance (ANOVA; BITS-SF). For computer skill level, we anticipated that those who identified as novice or novice-to-advanced 
computer users would have significantly lower mean scores on the BITS Advanced and Expert subscales, as well as the BITS-SF, 
compared to those who identified as advanced or advanced-to-expert/expert users (advanced-to-expert and expert users were com
bined, as only three participants identified as expert users). As we expected all students to have basic computer skills, we did not 
hypothesize differences on the BITS Novice subscale. We made similar hypotheses regarding college major. We selected a subset of 
participants who were in one of two major areas that generally require strong computer skills (i.e., computer science and engineering) 
or in one of two areas that typically do not require advanced computer training (i.e., education and nursing). Given the results of our 
multigroup invariance tests in Study 4, we added gender as a control variable. We expected computer science and engineering majors 
to have significantly higher scores on the BITS Advanced and Expert (but not Novice) subscales, as well as the BITS-SF, than education 
and nursing majors. 

Results are shown in Table 3. Regarding computer skill level, the resulting BITS MANOVA was significant, as were the univariate 
ANOVAs for the Advanced and Expert (but not Novice) subscales. The BITS-SF ANOVA was also significant. In each case, novice and 
novice-to-advanced users had significantly lower mean scores than advanced and advanced-to-expert/expert users. The BITS MAN
COVA for major was also significant, as were the univariate ANCOVAs for the Advanced and Expert (but not Novice) subscales and the 
BITS-SF. Engineering majors scored significantly higher than education and nursing majors. Computer science majors only scored 
higher than the latter two majors for the Expert subscale; this is likely due to few participants in this major (n = 4). 

Our results show strong evidence of concurrent validity for the BITS’ subscale scores and the BITS-SF total score. Subgroups ex
pected to have higher CSE levels generally had significantly higher scores on the BITS Advanced and Expert subscales, as well as the 
BITS-SF, than those thought to have lower CSE levels. 

Table 3 
BITS and BITS-SF scores for computer skill level and college major in study 6.  

Comparison df F p η2
P M (SD) M (SD) M (SD) M (SD) 

Computer Skill Level     Novice Novice/Adv Adv Adv/Exp 
BITS MANOVA 9, 630 9.08 <.001 .115     

BITS Novice 3, 210 1.59 .193 .022 5.75 (0.58) 5.86 (0.33)a 5.77 (0.68)b 6.00 (0.00)ab 

BITS Advanced 3, 210 27.74 <.001 .284 2.81 (1.28)ab 3.14 (1.18)cd 4.24 (1.09)ace 5.08 (1.20)bde 

BITS Expert 3, 210 15.96 <.001 .186 1.61 (1.03)ab 1.78 (0.90)cd 2.36 (1.12)ace 3.28 (1.36)bde 

BITS-SF ANOVA 3, 199 12.47 <.001 .158 3.16 (0.90)ab 3.57 (1.14)cd 4.12 (0.91)ac 4.76 (1.45)bd 

Major     Education* Nursing* Comp Sci* Engineer* 
BITS MANCOVA 9, 219 3.32 .001 .120     

BITS Novice 3, 73 0.60 .615 .024 5.74 (0.56) 5.82 (0.58) 6.00 (0.00) 6.00 (0.00) 
BITS Advanced 3, 73 7.37 <.001 .233 2.92 (1.06)a 3.38 (1.20)b 4.42 (0.82) 5.21 (1.02)ab 

BITS Expert 3, 73 7.49 <.001 .235 1.73 (0.71)ac 1.79 (0.88)bd 3.21 (1.71)ab 3.17 (1.30)cd 

Gender (covariate) 3, 71 1.64 .189 .065 – – – – 
BITS-SF ANCOVA 3, 69 6.87 <.001 .230 3.46 (0.30)a 3.60 (0.18)b 5.23 (0.58) 5.21 (0.34)ab 

Gender (covariate) 1, 69 0.01 .908 .000 – – – – 

Note. Novice/Adv = novice-to-advanced, Adv = advanced, Adv/Exp = advanced-to-expert/expert, Comp Sci = computer science, Engineer = en
gineering. BITS/BITS-SF computer skill level N = 214/203: novice n = 31/31, novice-to-advanced n = 94/89, advanced n = 67/62, advanced-to- 
expert/expert n = 22/21. BITS/BITS-SF college major N = 78/74: computer science n = 4/4, engineering n = 15/13, education n = 15/13, 
nursing n = 45/44. Means in each row with identical subscripts differ significantly at p ≤ .05; although subscripts are reported for the BITS Novice 
subscales, they should not be interpreted as the univariate ANOVAs were not significant. *Standard errors are reported instead of standard deviations. 
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8. Study 7: BITS-SF classification analysis 

We used latent class analysis (LCA) to assess the number of BITS-SF underlying classes. Consistent with our construct operation
alization, we anticipated there would be three latent classes—novice, advanced, and expert. 

We conducted LCAs using a combined sample of 391 college students from Study 3 (n = 204, 52.3%) and MTurk workers from 
Study 5 (n = 187, 47.8%). The college students completed the BITS-SF as part of their measure battery, and the MTurk workers did so 
immediately after completing the BITS for the second time. As all participants answered Yes to one of the novice BITS-SF items, it was 
removed from the analysis. 

For the remaining five BITS-SF items, we estimated and compared one, two, three, and four latent classes. Of the common tests used 
to ascertain the optimum number, the bootstrap likelihood ratio test (BLRT) performs the strongest (Nylund et al., 2007). The BLRT 
uses bootstrapping to estimate differences in log likelihood tests to determine if model fit is higher for the selected number of classes 
compared to one fewer. A significant finding indicates the added class improves fit, whereas a nonsignificant result suggests the smaller 
number of classes should be selected. We also reported the AIC as a second fit test. 

Both the BLRT and AIC supported the hypothesized three-class solution. This solution had significantly improved model fit 
compared to two classes (BLRT p < .001), and adding a fourth class did not provide meaningful information (BLRT p = .429). 
Additionally, the AIC was lowest for three classes (1581.75) compared to one (1684.44), two (1598.13), and four (1589.05) classes. 
These three classes fit the expected novice (n = 79, 20.2%), advanced (n = 248, 63.4%), and expert (n = 64, 16.4%) skill levels. Novice 
users had a high probability of responding Yes to the novice item (p = .96), a low-to-moderate probability of answering Yes to the 
advanced items (ps = .27 and .40), and a low probability of answering affirmatively to the expert items (ps = .03 and .08). Advanced 
users had a high probability of responding affirmatively to both the novice (p = 1.00) and advanced (ps = .73 and 1.00) items, as well 
as a low probability of answering Yes to the expert items (ps = .01 and .12). Finally, expert users had a high probability of answering 
Yes to the novice (p = .98) and advanced (p = .93 and .95) items, as well as a moderate-to-high probability of responding affirmatively 
to the expert items (ps = .62 and 1.00). 

With the final BITS-SF item added in, total scores had different ranges for novice (1–4; M = 2.48, SD = 0.60), advanced (3–5; M =
3.81, SD = 0.52), and expert (4–6; M = 5.45, SD = 0.59) classes. However, frequency analyses indicated that only three (3.8%) novice 
users and three (4.7%) expert users scored a 4; consequently, the scoring ranges are novice users 1 to 3, advanced users 3 to 5, and 
expert users 5 to 6. Since the categories overlap, 3 represents novice-to-advanced users, and 5 represents advanced-to-expert users; 
together, these correspond to the five stages of Dreyfus’ (2004) model of skill acquisition. 

We next examined mean scores across classes on related variables. We conducted six MANOVAs primarily involving the measures 
used to assess for convergent validity evidence in Study 6—one each for the three BITS subscales, one three-subscale CSE measure, five 
total score CSE measures, one five-subscale CSE measure, two total score specialized CSE measures, and one three-subscale specialized 

Table 4 
Mean differences across BITS-SF classes for related variables in study 7.  

Variable Novice 
M (SD) 

Advanced 
M (SD) 

Expert 
M (SD) 

BITS Novice 5.69 (0.60) 5.86 (0.42) 5.71 (0.59) 
BITS Advanced 2.49a (1.00) 3.72a (1.14) 4.56a (1.13) 
BITS Expert 1.59a (0.81) 1.73b (0.83) 3.48ab (1.27) 
Murphy et al. (1989): Comp. SE 

Beginner 3.54ab (0.60) 4.12a (0.69) 4.36b (0.93) 
Advanced 2.81a (0.61) 3.47a (0.79) 4.17a (8.24) 
Mainframe 3.54ab (0.60) 4.12a (0.69) 4.36b (0.93) 

Cassidy and Eachus (2002): Comp. SE 3.89ab (0.60) 4.41a (0.69) 4.67b (0.92) 
Compeau and Higgins (1995b): Comp. SE 5.27a (1.51) 6.13a (1.65) 7.34a (1.69) 
Henry and Stone (1997): Comp. SE 3.16a (0.62) 3.55a (0.72) 4.09a (0.79) 
Hill et al. (1987): Comp. SE 3.64 (0.83) 3.97 (0.81) 3.90 (1.08) 
Howard (2014): Comp. SE 3.75a (1.07) 4.57a (1.19) 5.54a (1.27) 
Marakas et al. (2007): Comp. SE 

General 5.34a (1.52) 6.98a (1.86) 8.11a (1.87) 
Windows 5.13ab (2.03) 7.25a (1.96) 8.08b (2.00) 
Spreadsheet 4.31ab (2.40) 6.30a (2.57) 7.46b (2.44) 
Word-Processing 5.43a (2.40) 7.09a (2.48) 8.20a (2.19) 
Internet 5.28a (1.79) 7.18a (2.40) 8.20a (2.19) 
Database 3.00a (1.97) 3.98b (2.80) 5.92ab (3.06) 

Hong et al. (2014): Smartphone SE 3.43ab (0.59) 3.72a (0.40) 3.77b (0.43) 
Teo and Koh (2010): Teaching Comp. SE 

Basic 5.51 (1.28) 5.74 (1.72) 6.03 (1.24) 
Media-Related 3.66a (1.58) 4.20b (1.52 5.13ab (1.38) 
Web-Based 4.30a (1.50) 5.04a (1.49) 5.67a (1.29) 

Young (2001): Laptop SE 5.41 (2.42) 4.76 (2.98) 5.37 (3.39) 

Note. Comp. = computer, SE = self-efficacy. BITS Novice, BITS Advanced, and BITS Expert means include the combined college student and MTurk 
worker samples. Otherwise, the sample consists only of the college students. Means with identical subscripts differ at p ≤ .05. Descriptions of the 
measures are found in Table S1 of the online supplement. 
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CSE measure. The BITS subscales’ MANOVA was conducted using the full sample, whereas the other MANOVAs only used the college 
sample (as the MTurk samples did not complete the necessary measures). 

All MANOVAs and follow-up ANOVAs were significant at p ≤ .01, except for one general CSE measure (p = .097), one specific CSE 
measure (p = .308), and one subscale on a specific CSE measure (p = .291). Novice users primarily had the lowest mean scores and 
expert users the highest; these are shown in Table 4. 

Our findings support the use of the BITS-SF for assessing CSE at novice, advanced, and expert levels. Three latent classes were 
identified; these differed as expected on mean score comparisons across other measures. 

9. General discussion 

We conducted seven studies to develop and psychometrically assess two scales of CSE—one full-length measure (BITS) and one 
screening measure (BITS-SF)—that correct for issues in past scales and can be used with individuals at novice, advanced, and expert 
perceived computer skill levels. Both the 18-item BITS and six-item BITS-SF showed strong psychometric properties. 

To emphasize content validity, we based our initial item construction on Dreyfus’ (2004) five-stage model of adult skill acquisition 
and a survey of computer experts. The experts provided information on which tasks constitute novice, advanced, and expert skill levels. 
We also included items representing various computer-related skill subcategories (i.e., hardware, networking, Internet, operating 
system, software, and troubleshooting) and ensured that items from each subcategory were included at all levels to provide an 
appropriate degree of specificity for research and practical usage. Both the EFA and CFA supported the three-factor structure of the 
BITS (Novice, Advanced, and Expert), and the LCA indicated there were three classes underlying the BITS-SF that represented the same 
factors. The BITS′ factor structure showed evidence of multigroup invariance up to the partial scalar level across men and women. 
Finally, both measures’ scores showed good evidence of convergent, discriminant, and concurrent validity, and the BITS indicated 
strong temporal stability up to eight weeks. 

Our scales address the limitations of existing CSE measures, which have restricted utility because of outdated items, criterion 
contamination, and/or problematic construct operationalization (Howard, 2014). Additionally, past measures have often been 
designed to be at the very general and highly specific ends of the task specificity range, rather than its center. 

9.1. Implications 

Our focus in developing the BITS and BITS-SF was to provide current measures with strong applicability to applied settings, 
particularly education. Most CSE measures focus on one of two types of task specificity: a general sense of CSE transcending different 
computer use aspects (e.g., Howard, 2014) or CSE for a specific scenario, such as using programming languages (e.g., Tsai et al., 2019). 
However, few existing measures allow researchers and educators to assess CSE across different computer use aspects. The BITS and 
BITS-SF fill these needs: They assess CSE as it represents a person’s confidence for engaging in tasks at novice, advanced, and expert 
skill levels across different computer use subcategories that are relevant to modern technology. This is especially important for 
educational settings, for which CSE measures that assess confidence across different skill levels are beneficial (see Scherer & Siddiq, 
2015). 

The BITS and BITS-SF can be used to assess CSE in both individuals and groups and across various applications. CSE plays a 
prominent role in educators’ use of technology (Kreijns et al., 2013) and willingness to teach technology skills to their students (Siddiq 
& Scherer, 2016). As a result, measures such as the BITS and BITS-SF may be an important part of CSE assessment within educational 
settings to determine which instructors could benefit from trainings to use technology within the workplace. The BITS and BITS-SF can 
also be used during the hiring process to determine the highest computer skill level applicants feel confident using and if those match 
the complexity of technology used within the institution. Finally, the BITS and BITS-SF can also be useful for assessing student CSE. 
Researchers have called for educational administrators to consider individual factors, such as CSE, when determining how and when to 
incorporate new technology into the classroom (Ferdousi, 2019). For example, as higher education increasingly uses online student 
evaluations of teaching (e.g., Chapman & Joines, 2017) for their face-to-face students and continues to enroll more students in online 
classes (Seaman et al., 2018), it becomes essential to anticipate both how many and which students have a high likelihood of expe
riencing challenges using required technology. The BITS or BITS-SF can provide a quick assessment of students prior to starting college 
or specific classes to determine which ones may need pre-trainings or ongoing assistance. 

The BITS and BITS-SF are currently the only modern measures that assess CSE across three skill levels, allowing them to be used 
with diverse populations for specific purposes. For example, as the BITS Novice subscale assesses confidence for basic tasks, this is 
useful for older adult learners, who may be uncomfortable with standard technology to the point of declining to use it (Weigold et al., 
2016). Higher scores on this subscale may predict their basic classroom technology use or likelihood to enroll in online courses. The 
Advanced subscale would likely predict students’ use of computers while learning and educators’ focus on developing their students’ 
computer skills (e.g., Mcilroy et al., 2007; Siddiq & Scherer, 2016). Finally, the Expert subscale could predict students’ and instructors’ 
adaptation of new classroom technology or teaching formats, such as online learning (see Alqurashi, 2016), including the frequency 
and speed by which they move beyond basic functionality. 

The BITS and BITS-SF are also useful for research. Educational researchers have noted a relative scarcity of literature on CSE within 
specific contexts and populations, such as online learning (e.g., Alqurashi, 2016). Others have emphasized the need to assess CSE 
across different computer skill levels to resolve contradictory past findings related to the role of teacher CSE on various outcomes (see 
Scherer & Siddiq, 2015; Siddiq & Scherer, 2016). Our two measures’ inclusion of a broad range of different computer subcategories 
across these levels allows them to be used with diverse research topics. Finally, their short lengths permit their inclusion in research 
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studies without adding undue time or cost. 
The BITS-SF is also unique in that it is the first CSE measure developed as a screening tool. This is a parsimonious scale for fast 

assessment that can be followed up as needed with more extensive measures, including the full-length BITS. Such a scale is useful in the 
many situations in which educators and researchers are interested in gathering data using as few items as possible, such as when 
determining undergraduate students’ computer confidence in Freshman orientations or including CSE items as part of the de
mographics of a research study. 

9.2. Limitations 

There are several directions for future research using the BITS and BITS-SF. First, both scales should be examined using samples on 
the low end of CSE. We selected our samples to represent a wide range of computer skill levels, centered on the advanced level. 
Consequently, most participants had strong perceived confidence for performing novice computer tasks. Second, our samples primarily 
included general workers and college students who were not chosen by random selection; further research is needed to examine these 
scales in various educational settings. Relatedly, examining the BITS and BITS-SF in diverse cross-cultural and adolescent samples is an 
important future direction, as our samples were predominantly White (college students) and in young (college students) or middle 
(MTurk workers) adulthood. Finally, all participants completed the studies online using computers. Although paper-and-pencil and 
online surveys are generally equivalent (e.g., Weigold et al., 2013), some people prefer not to complete studies on computers (see 
Weigold et al., 2016). Consequently, future research should examine these scales using other methods. 

9.3. Conclusion 

The present studies described the development and validation of the BITS and BITS-SF, two measures of CSE that assess individuals 
at three computer skill levels—novice, advanced, and expert—with items representing subcategories of computer tasks. Both scales 
have strong psychometric properties and address problems in prior measures; additionally, the BITS-SF is the first CSE screening 
measure developed. Together, these advantages make the BITS and BITS-SF ideal choices for assessing CSE. Both measures are 
available at www.bitssurvey.com and free for non-commercial use. 
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